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Abstract—Needle insertion is a common task in medical
practice. Bevel-tip needles allow a physician to steer the needle
to a target, however the actual path of the needle can be difficult
to predict. In this paper, we demonstrate multiple methods to
generate optimal policies for bevel-tip needle to reach a target
while avoiding obstacles and minimizing insertion length. With
a coarsely discretized tissue environment, we observe that the
generated policy is robust but solving for it is computationally
expensive, preventing us from further refining the discretiza-
tion for potential performance improvement. Policies generated
from a continuous POMDP are computationally less expensive
when solved with Partially Observable Monte Carlo Planning
(POMCP). Our results show that the continuous formulation of
the problem yields policies that achieve a higher success rate in
complicated problems. Also, it is able to achieve solutions with
shorter paths as well as a wider variety of solutions compared
to the discrete case.

I. INTRODUCTION

Needle insertion is a critical aspect of many medical proce-
dures, such as tissue sample acquisition, drug delivery, thermal
ablation, and others. In all of these procedures the objective is
to place the needle tip at a target location while minimizing
damage to the surrounding tissues. Traditional needles are
constrained to a straight insertion path due to their symmetric
tip, however, recent innovations in needle design have enabled
higher control over path through the use of bevel or kinked
needle tips (Figure 1) [1]. We aim to predict the trajectory of
the needle based on tip location and orientation, and provides
advice for rotation actions based on some optimal policy,
so the physician is able to make more intelligent rotational
adjustments about the needle axis to reach the target while
avoiding obstacles.

A. Prior Work

Alterovitz et al. formulated a similar problem for two-
dimensional needle steering using a discretized grid to sim-
ulate tissue, assuming full observability. They use previously
obtained MRI images to assign transition probabilities for
needle insertion model. Needle motion was simulated as a
”Dubins Car” MDP problem [2].

In another approach by Patil et al., the path planning of
needle insertion is done online to take advantage of real-
time feedback from magnetic resonance imaging (MRI) or
ultrasonic imaging. Physicians can update the plan based
on where the needle has gone, as well as any unexpected
physiological changes. They use a rapidly-exploring random
tree (RRT) algorithm to speed up computation [3].

Fig. 1. Bevel-tip needle (picture taken from [1])

Patil, van den Berg and Alterovitz have approached the
problem through modeling the deformable tissue environment
through finite element method (FEM). In this work RRT was
used to generate multiple path candidates for the needle to
take. Then LQG control was used to select the path with the
highest probability of success. [4].

Our work will tackle the same problem of path planning
for needle insertion, but we will formulate the problem in
two ways. One formulation will use a discrete environment
similar to how was done in [2] and this will be compared to a
continuous formulation of the problem. We will also include
tip angle sensing in our POMDP problem formulation, which
in practice can be achieve through shape sensing methods as
done in [5].

II. DISCRETE POMDP

A. State Space (S)

The 2D tissue is discretized into a 10× 10 grid. The nodes
use the standard Cartesian coordinates. At any node, the needle
tip can take 8 orientations, which are angles in 45◦ buckets.
The first orientation bucket is aligned with the X-axis and
it increments in counterclockwise direction. Thus, there are
a total of 800 states. The target and obstacles are located at
desired nodes. The start state is always at the boundary with
the tip facing towards the tissue. The terminal states include
the target node with any tip orientation, obstacle states with
any tip orientation and any boundary nodes with the tip facing
outward.



B. Belief Space (B)

The size of belief space is the same as that of state space,
however because of our chosen observation model, only 27
elements in the belief vector are nonzero. They correspond to
the states shown in Figure 3.

C. Actions (A)

The policy is presented to the physician during insertion in
the form of which rotation is necessary to best proceed to the
target. In our 2D simulation, there are only two orientations
considered, so the actions available are clockwise (CW) and
counterclockwise (CCW). They indicate, in the 2D field, the
directions that the needle orientation tends to drive the tip
at the next time step. By keeping the actions as an absolute
orientation in global reference frame (rather than relative ones
like ”rotate” and ”do not rotate”), we do not have to keep track
of the previous orientation as part of the state. The rotation
instructions for physicians can be outputted by separately
processing the policy itself.

D. Rewards (R)

Several types of rewards will be collected during needle
insertion. Walls and obstacles have large negative rewards,
while the target has a large positive reward. The time taken
to reach the target is also penalized by small negative reward
at every time step. Only relative magnitudes of the rewards
matter for the problem.

E. Transition Model (T )

The transition model assigns probabilities to three neigh-
boring states based on beam bending mechanics. The needle
can either move to the node in the front, facing forward or
45◦ sideways in the direction to which the tip force causes
it to bend, or move to a diagonal node facing 45◦ sideways.
These are shown in Figure 2.

Fig. 2. The three states with non-zero probabilities in the discretized POMDP
transition model

F. Observation Model (O)

Uncertainty in this problem arises from the fact that sensor
readings exhibit noise and artifacts. For the real problem,
we would use ultrasonic imaging to locate the needle tip
and needle shape sensing to determine the tip orientation.
We use an observation model that assigns probabilities to 27
combinations of location and orientation at neighboring nodes
to the actual state as shown in Figure 3.

Fig. 3. The possible states that can be observed with the combination of
ultrasound and needle-shape sensing

G. Solver: SARSOP

We used the Julia SARSOP.jl implementation of Successive
Approximations of the Reachable Space under Optimal Poli-
cies (SARSOP) to solve the discrete POMDP problem. This
anytime solver samples only optimal points within the reach-
able belief state. It only calculates backup beliefs on states that
are visited by the optimal policy, thus cutting computational
costs associated with the larger set of calculations. It does this
by performing value iteration on sampled points, followed by
pruning away trees that are not explored by the optimal policy
[6] [7].

III. CONTINUOUS POMDP

A. State Space (S)

The state space is continuous but conceptually it is similar
to the discrete case. The tissue environment is set to be a
100 × 100 mm bounding box. The target and obstacles are
patches centered at certain nodes. Target nodes, obstacle nodes
and all boundary nodes with any tip orientation are terminal
states.



B. Belief Space (B)

Size is same as of states. Gaussian. Finite non-zero value
everywhere.

C. Actions (A)

The actions will be the same as the ones used in discrete
POMDP: counterclockwise and clockwise.

D. Rewards (R)

The rewards will be similar to the ones used in discrete
POMDP: the area centered at the target has positive reward
while the areas around the obstacles and at the boundary have
negative rewards. These areas are defined as a 10mm×10mm
square centered at the specified position. We also penalized the
time taken to reach the target by giving a small negative reward
at every state with the goal of minimizing the length of the
path (which minimizes the damage to surrounding tissues).

E. Transition Model (T )

The transition model is based on beam theory. The
schematic is shown in Figure 4. The spatial and angular
deflections of the needle tip are calculated at each time step
using Equation 1 and 2:

u =
PL3

3EI
(1)

θ =
PL2

2EI
(2)

The tip load P is modeled as a force with a mean of 40 N
and a standard deviation of 5 N to account for tissue stiffness
uncertainty. The needle is inserted by 2 mm for every time
step and has a circular cross-section with an outer diameter of
0.9 mm and inner diameter of 0.6 mm. The Young’s modulus
of needle material is 3 GPa. A rotation matrix is used to keep
track of the needle tip orientation in global reference frame.

Fig. 4. The beam bending model used to for the continuous POMDP transition
model

F. Observation Model (O)

Similar to the discrete case, uncertainty in this problem
arises from the fact that sensor readings exhibit noise and
artifacts. We simulated the tip location measurement through
ultrasound and tip orientation measurement through shape
sensing by taking the actual current state and using it as the
mean of a Gaussian distribution to sample from. These obser-
vations were obtained from sampling a multivariate Gaussian

distribution as shown in Equation 3. In our case the distribution
was a three dimensional Gaussian, where the mean values
are µ = [xactual, yactual, θactual] and the covariance matrix
is diagm([2.0mm, 2.0mm, 0.5rad]).

f(x|µ,Σ) =
1

(2π)
d
2 | Σ |1/2

e−
1
2 (x−µ)T Σ−1(x−µ) (3)

G. Solver: POMCP

We used the Julia POMCP.jl implementation of Partially
Observable Monte Carlo Planning (POMCP) to solve the
continuous problem online. In POMCP, each simulation starts
from a state sampled from the belief state using a particle
filter, and chooses the action based on the optimal value at the
current step and some adjustable exploration bonus. Then it
performs the selected action through Monte-Carlo simulation.
It recursively evaluates the next state if it is already in the
search tree, or inserts it into the tree and executes a rollout
policy through simulation. It also updates the statistics of tree
nodes by back-propagating the results up to the root. POMCP
repeats this process and reports the best action based on the
returned values of the tree search [8].

IV. RESULTS

We set up a simple layout with one obstacle and one
target for our first experiment. For the discrete POMDP case
the obstacle was placed at [40mm, 60mm] and the target at
[80mm, 40mm]. The rewards were set to 100 for reaching
the target, -20 for running into obstacles and -1 for every
step taken. We used a discount factor of 0.9. We set the
insertion point of needle at [40mm, 100mm, 3π/2rad] with
the tip facing downward. Figure 5 shows a sample simulation
of our policy where the needle successfully reached the target.
Big red dots show the obstacle positions in the grid and
green dots show the target. Along the path of the needle
we recorded the action taken at every step. Yellow dots
correspond to a clockwise action and blue dots correspond to a
counterclockwise action. We ran simulation with our policy 20
times which yielded a success rate of 70%. For the continuous
POMDP case the obstacles and target were placed at the same
locations as in the discrete case with the same rewards. In
this case we used a discount factor of 0.95. Figure 6 shows
a sample simulation of our policy with an insertion point at
[40mm, 100mm, 3π/2rad]. We ran simulation with our policy
20 times which yielded a success rate of 70%.

To make the problem more challenging we added more
obstacles around the target. For both the discrete and contin-
uous POMDP, we placed obstacles at nodes [40mm, 60mm],
[60mm, 60mm] and [70mm, 40mm], and the target at node
[50mm, 40mm]. In the discrete problem we set the discount
factor to 0.92. Figure 7 shows a sample simulation of our
policy with an insertion point at [30mm, 100mm, 3π/2rad].
We ran simulation with our policy 20 times which yielded a
success rate of 70%. In the continuous problem we set the
discount factor to 0.9. Figure 8 shows a sample simulation of
our policy with an insertion point at [30mm,100mm, 3π/2rad].



Fig. 5. Discount factor = 0.9, target reward = 100, obstacle reward = -20

Fig. 6. Discount factor = 0.95, target reward = 100, obstacle reward = -20,
boundary reward = -100

We ran simulation with our policy 20 times which yielded a
success rate of 90%.

We performed another experiment where we increased the
discount factor for both the continuous and discrete cases and
ran their solvers with the more challenging layout. The policy
returned by SARSOP did not vary much, however, POMCP
returned a significantly different policy. Figure 9 and Figure
10 show a successful and an unsuccessful simulation with this
policy respectively.

V. DISCUSSION

One interesting result that we observed in the experiments
is shown in Figure 5 and 6. In both discrete and continuous
POMDP cases, the solvers learned to drive the needle along
straight lines. By continuously switching the orientation, the
needle is able to go straight to a target. This is a phenomenon

Fig. 7. Discount factor = 0.92, target reward = 100, obstacle reward = -20,
boundary reward = -100

Fig. 8. Discount factor = 0.9, target reward = 100, obstacle reward = -20,
boundary reward = -100

that was intentionally designed into a duty-cycle driven steer-
able needle designed by Majewicz et al. [9]. From these two
figures we can also see an advantage of the continuous model.
When attempting to take a direct route, the solution for discrete
POMDP has no choice but to traverse four half circle arcs
to approximate a straight path. Whereas, the solution for the
continuous POMDP is able to approximate a straight path
more closely.

In the more difficult problem with three obstacles around
the target, both discrete and continuous POMDPs arrive at the
same policy with a discount factor of 0.92 and 0.9 respectively
as shown in Figures 7 and 8, respectively. When the discount
factor increases, the policy obtained from discrete POMDP
remains the same. Whereas the continuous POMDP is able
to find a shorter path by navigating through a narrow path in



Fig. 9. Discount factor = 0.95, target reward = 100, obstacle reward = -20,
boundary reward = -100

Fig. 10. Discount factor = 0.95, target reward = 100, obstacle reward = -20,
boundary reward = -100

between obstacles at [40mm, 60mm] and [60mm, 60mm] as
shown in Figure 9. The continuous POMDP formulation has
the advantage of discovering these more aggressive policies
because it is able to change actions more frequently compared
to the discrete POMDP formulation. The trade-off of taking
these more aggressive policies is that the failure rate increases
to 20%.

VI. CONCLUSION

This work investigates two ways to model needle insertion
in tissues using POMDP. Both the discrete method and the
continuous method are able to generate policies that can
drive needle to the target while dodging obstacles under
transition and observation uncertainty. We have shown that the
continuous POMDP problem is easier to solve than discrete
POMDP problem, and the continuous policy has higher spatial

resolution hence better performance. In conclusion, continuous
POMDP with an online solver like POMCP is more suitable
for path planning of bevel-tip needle insertion.

VII. FUTURE WORK

The most direct extension of this work is to go to a three-
dimensional tissue model. For the discrete problem, the size
of state space will increase due to the extra dimension. For
example, there will be 27 neighboring grid nodes, each with
27 possible orientations of the needle tip. For the continuous
problem, the same beam theory still holds and we will need
to keep track of the normal vector of the bevel surface at the
tip. Six variables, three for location and three for orientation,
will be used to define the state.

Another interesting parameter that was not accounted for in
our models is the physician action uncertainty. Humans do not
necessarily act rationally. Through experience, physicians have
learned to trust what they see and feel, and this intuition can
overwrite what instructions they are given by our algorithm.
This uncertainty could be included in the problem in two
ways: i) introducing noise into the actions or ii) spreading
the probabilities assigned in the transition model to states
corresponding to the opposite action.
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